

Optocoupler, Phototriac Output, Low Input Current

Features

- 400 and 600 V Blocking Voltage
- 5.0 mA Maximum Trigger Current
- Isolation Test Voltage, 5300 V_{RMS}, t = 1.0 sec.
- Isolation Materials per UL94
- Pin Compatible with Optocouplers IL440-1 MOC 3051 IL440-2 MOC 3052 IL440-3 MOC3053 IL440-4 MOC 3021 IL440-5 MOC 3022 IL440-6 MOC 3023

- Lead-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

Agency Approvals

- UL1577, File No. E52744 System Code H or J, Double Protection
- CSA 93751
- DIN EN 60747-5-2 (VDE0884) DIN EN 60747-5-5 pending Available with Option 1
- BABT/ BSI IEC60950 IEC60065

Applications

High Current Triac Driver Solid State Relay Switch Small AC Loads

Description

The IL440 consists of a GaAs infrared emitter optically coupled to a silicon planar triac chip with a nonzero crossing network. The two semiconductors are assembled in a 6 pin dual-in-line plastic package. The output detector IL440-1, 2, 3 is capable of blocking up to 600 volts which permits control of off-line voltages up to 240 VAC. The IL440 can handle currents up to 100 mA RMS.

Order Information

Part	Remarks
IL440-1	15 mA I _{FT} , 600 V V _{DRM} , DIP-6
IL440-2	10 mA I _{FT} , 600 V V _{DRM} , DIP-6
IL440-3	5.0 mA I _{FT} , 600 V V _{DRM} , DIP-6
IL440-4	15 mA I _{FT} , 400 V V _{DRM} , DIP-6
IL440-5	10 mA I _{FT} , 400 V V _{DRM} , DIP-6
IL440-6	5.0 mA I _{FT} , 400 V V _{DRM} , DIP-6
IL440-1X009	15 mA I _{FT} , 600 V V _{DRM} , SMD-6 (option 9)
IL440-2X006	10 mA I _{FT} , 600 V V _{DRM} , DIP-6 400 mil (option 6)
IL440-3X007	5.0 mA I _{FT} , 600 V V _{DRM} , SMD-6 (option 7)
IL440-3X009	5.0 mA I _{FT} , 600 V V _{DRM} , SMD-6 (option 9)
IL440-4X007	15 mA I _{FT} , 400 V V _{DRM} , SMD-6 (option 7)
IL440-4X009	15 mA I _{FT} , 400 V V _{DRM} , SMD-6 (option 9)
IL440-5X006	10 mA I _{FT} , 400 V V _{DRM} , DIP-6 400 mil (option 6)
IL440-5X009	10 mA I _{FT} , 400 V V _{DRM} , SMD-6 (option 9)
IL440-6X006	5.0 mA I _{FT} , 400 V V _{DRM} , DIP-6 400 mil (option 6)
IL440-6X007	5.0 mA I _{FT} , 400 V V _{DRM} , SMD-6 (option 7)
IL440-6X009	5.0 mA I _{FT} , 400 V V _{DRM} , SMD-6 (option 9)

For additional information on the available options refer to Option Information.

Absolute Maximum Ratings

 $T_{amb} = 25$ °C, unless otherwise specified Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability.

Input

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V _R	5.0	V
Forward current		١ _F	60	mA
Surge current	P.W. < 10 μs	I _{FSM}	3.0	A
Power dissipation		P _{diss}	100	mW
Junction temperature		Tj	100	°C

Output

Parameter	Test condition	Part	Symbol	Value	Unit
Peak off-state voltage		IL440-1	V _{DRM}	600	V
		IL440-2	V _{DRM}	600	V
		IL440-3	V _{DRM}	600	V
		IL440-4	V _{DRM}	400	V
		IL440-5	V _{DRM}	400	V
		IL440-6	V _{DRM}	400	V
On-state RMS current			I _{D(RMS)}	100	mA
Peak surge current	$t_p \le 10 \text{ ms}$		I _{FSM}	1.2	А
Peak on-state current	$t_p/T=0.01\leq 100~\mu s$		I _{DRM}	2.0	А
Power dissipation			P _{diss}	300	mW
Junction temperature			Т _і	125	°C

Coupler

Parameter	Test condition	Symbol	Value	Unit
Isolation voltage, 1.0 sec., per Standard Climate 23 °C/50 % RH, DIN 50014		V _{ISO}	5300	V _{RMS}
Creepage			≥ 7.0	mm
Clearance			≥ 7.0	mm
Isolation resistance	V_{IO} = 500 V, T_{amb} = 25 °C	R _{IO}	≥ 10 ¹²	Ω
	$V_{IO} = 500 \text{ V}, \text{ T}_{amb} = 100 ^{\circ}\text{C}$	R _{IO}	≥ 10 ¹¹	Ω
Total power dissipation		P _{tot}	330	mW
Storage temperature range		T _{stg}	- 55 to + 125	۵°
Ambient temperature		T _{amb}	- 40 to + 100	۵°
Junction temperature		Тj	100	٥C
Lead soldering temperature	2.0 mm from case, t < 10 s	T _{sld}	260	۵°

Electrical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

Input

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward voltage	I _F = 50 mA	V _F		1.25		V
Reverse voltage	I _R = 10 μA	V _R	5.0			V
Junction capacitance	V _R = 0 V, f = 1.0 MHz	Cj		50		pF

Output

Off- state output terminal voltage (see Table 1.)

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Peak on-state voltage	$I_{TM} = 100 \text{ mA}, I_{FT} = 30 \text{ mA}$	V _{TM}		1.5	3.0	V
Critical rate of rise of off-state voltage	I _F = 0, V _S = 240 V _{RMS}	dV _{cr} /dt		50		V/µs
	I_F = 30 mA, V_S = 60 V_{RMS}	dV _{crq} /dt	0.13	0.25		V/µs

I_{FT} and Blocking Voltage Selection¹⁾

Bin number	BV (Volts) Max @ I _{DRM} = 500 nA	I_{FT} Max @ V_T = 6 V, R_L =150 Ω
IL440-1	600	15
IL440-2	600	10
IL440-3	600	5.0
IL440-4	400	15
IL440-5	400	10
IL440-6	400	5.0

 $^{1)}$ Test voltage must be applied within dV/dt rating of 0.13 V/µsec.

Coupler

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Holding current	$I_F \geq 10 \text{ mA}, V_S \geq 3.0 \text{ V}$	Ι _Η		1.0		mA

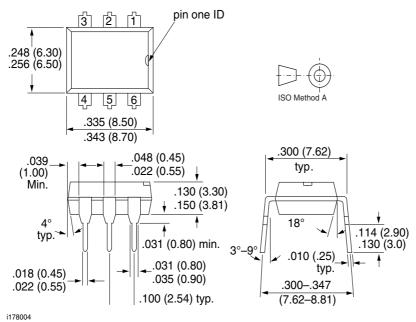
Maximum Safety Ratings

(according to DIN EN 60747-5-2(VDE0884)/ DIN EN 60747-5-5 pending) see figure 1 This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

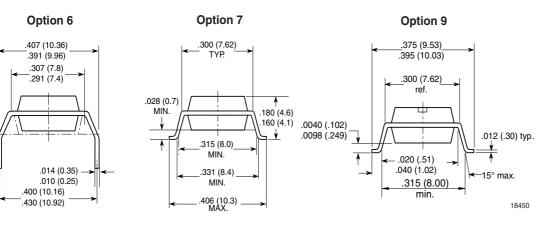
Input

The device is used for protective separation agains electrical shock within the maximum safety ratings. This must be ensured by protective circuits in the applications.

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward voltage		I _{S, INPUT}			130	mA


Output

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Power dissipation		P _{S, OUTPUT}			300	mW


Vishay Semiconductors

Package Dimensions in Inches (mm)

.....

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.